William Neal Reynolds Distinguished Professor
& Department Head

Center for Integrated Fungal Research
Department of Plant and Microbial Biology
2124 Gardner Hall
Box 7612
Office: (919) 513-3807
Fax: (919) 515-3436


Research Interests

Research efforts in my laboratory focus on the molecular biology of interactions between fungal pathogens of plants and their hosts, with an emphasis on the role of toxins and reactive oxygen species in pathogenicity. A major area of interest focuses on fungi in the genus Cercospora and the role of their photoactivated toxin cercosporin in disease development. Cercosporin generates reactive oxygen species that damage host cells and allow for successful pathogenesis. We are isolating and characterizing genes from the fungus that encode resistance to cercosporin, both to understand the molecular basis of toxin resistance as well as for engineering Cercospora-resistant plants using tobacco as a model system. Another project focuses on the role of light-activated toxins in the Black Sigatoka disease of banana, caused by Mycosphaerella fijensis. We are identifying polyketide gene clusters in the M. fijiensis genome and are characterizing the products and their role in disease development. Our goal is to gain an understanding of fungal pathogenicity factors and to use this information for the development of disease-resistant plants.

Selected Publications

Beseli, A., Amnuaykanjanasin, A., Herrero, S., Thomas, E., and Daub, M. E. 2015. Membrane transporters in self resistance of Cercospora nicotianae to the photoactivated toxin cercosporin. Curr. Genet. (In Press). DOI 10.1007/s00294-015-0486-x

Beseli, A., da Silva, M., and Daub, M.E. 2015. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2 resistance genes in resistance to the photoactivated toxin cercosporin. FEMS Microbiol Lett 362: 1-7.

De Souza, A., Herrero, S., Maffia, L. A., and Daub, M. E. 2014. Methods for Cercospora coffeicola protoplast isolation and genetic transformation with green fluorescent protein. Eur. J. Plant Pathol. 139:241-244.

Daub, M. E., Herrero, S., and Chung, K. R. 2013. Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers. Antiox. Redox. Signal. 19:970-989.

Rueschhoff, E. E., Gillikin, J. W., Sederoff, H. W., and Daub, M. E. 2013. The SOS4 pyridoxal kinase is required for maintenance of vitamin B6 – mediated processes in chloroplasts. Plant Physiol. Biochem. 63:281-291.

Herrero, S., Gonzalez, E., Gillikin, J. W., Velez, H., Daub, M. E. 2011. Identification and characterization of a pyridoxal reductase involved in the vitamin B6 salvage pathway in Arabidopsis. Plant Mol. Biol. 76:157 – 169.

Daub, M. E., Herrero, S., and Taylor, T. V. 2010. Strategies for the development of resistance to cercosporin, a toxin produced by Cercospora species. pp. 157 -172 In: Cercospora Leaf Spot of Sugar Beet and Related Species. R. T. Lartey, J. J. Weiland, L. Panella, P. W. Crous, and C. E. Windels, eds. APS Press, St. Paul, MN.

Daub, M. E., and Chung, K. R. 2009. Photoactivated perylenequinone toxins in plant pathogenesis. Chapt. 11 in: The Mycota V, Plant Relationships, 2nd Edition. H. Deising, Ed. Springer-Verlag, Berlin Heidelberg.
Amnuaykanjanasin, A., and Daub, M. E. 2009. The ABC transporter ATR1 is necessary for efflux of the toxin cercosporin in the fungus Cercospora nicotianae. Fung. Genet. Biol. 46:146-158.
Velez, H., Glassbrook, N. J., and Daub, M. E. 2008. Mannitol biosynthesis is required for pathogenicity of Alternaria alternata. FEMS Microbiol. Lett. 285-122-129.

Gonzalez, E., Danehower, D., and Daub, M. E. 2007. Vitamer levels, stress response, enzyme activity, and gene regulation of Arabidopsis lines mutant in the pyridoxine/pyridoxamine 5’-phosphate oxidase (PDX3) and the pyridoxal kinase (SOS4) genes involved in the vitamin B6 salvage pathway. Plant Physiol. 145:985-996.

Herrero, S., Amnuaykanjanasin, A., and Daub, M. E. 2007. Identification of genes differentially expressed in the phytopathogenic fungus Cercospora nicotianae between cercosporin toxin-resistant and -susceptible strains. FEMS Microbiol. Lett. 275:326-337.

Chen, H., Lee, M. H., Daub, M. E., and Chung, K. R. 2007. Molecular analysis of the cercosporin biosynthetic gene cluster in Cercospora nicotianae. Molec. Microbiol. 64:755-770.

Denslow, S. A., Rueschhoff, E. E., and Daub, M. E. 2007. Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress. Plant Physiol. Biochem. 45:152-161.

Herrero, S. and Daub, M. E. 2007. Genetic manipulation of vitamin B6 biosynthesis in tobacco and fungi uncovers limitations to up-regulation of the pathway. Plant Sci. 172:609-620.

Velez, H., Glassbrook, N. J., and Daub, M. E. 2007. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genet. Biol. 44:258-268.

Taylor, T. V., Mitchell, T. K., and Daub, M. E. 2006. An oxidoreductase is involved in cercosporin degradation by the bacterium Xanthomonas campestris pv. zinniae. Appl. Environ. Microbiol. 72:6070-6078.

Choquer, M., Dekkers, K. L., Chen, H. Q., Cao, L., Ueng, P. P., Daub, M. E., and Chung, K. R. 2005. The CTB1 gene encoding a fungal polyketide synthase is required for cercosporin biosynthesis and fungal virulence of Cercospora nicotianae. Molec. Plant Microbe Interact. 18:468-476.

Denslow, S. A., Walls, A. A., and Daub, M. E. 2005. Regulation of biosynthetic genes and antioxidant properties of vitamin B6 vitamers during plant defense responses. Physiol. Molec. Plant Pathol. 66:244-255.

Daub, M. E., Herrero, S., and Chung, K. R. 2005. Photoactivated perylenequinone toxins in fungal pathogenesis of plants. FEMS Microbiol. Lett. 252:197-206.

Wetzel, D.K., Ehrenshaft, M., Denslow, S. A., and Daub, M. E. 2004. Functional complementation between the PDX1 vitamin B6 biosynthetic gene of Cercospora nicotianae and pdxJ of Escherichia coli. FEBS Lett. 564: 143-146.

Mitchell, T. K., Alejos-Gonzalez, F., Gracz, H. S., Danehower, D. A., Daub, M. E., and Chilton, W. S. 2003. Xanosporic acid, an intermediate in bacterial degradation of the fungal phototoxin cercosporin. Phytochemistry 62:723-732.

Chung, K. R., Daub, M. E., Kuchler, K., and Schuller, C. 2003. The CRG1 gene required for resistance to the singlet oxygen-generating cercosporin toxin in Cercospora nicotianae encodes a putative fungal transcription factor. Biochem. Biophys. Res Commun. 302:302-310.

Chung, K. R., Ehrenshaft, M., and Daub, M. E. 2003. Expression of the cercosporin toxin resistance gene CRG1 as a dicistronic mRNA in the filamentous fungus Cercospora nicotianae. Current Genet. 43:415-424.

Chung, K. R., Ehrenshaft, M., Wetzel, D. K., and Daub, M. E. 2003. Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae. Molec. Gen. Genomics 270:103-113.

Chung, K. R., Ehrenshaft, M., and Daub, M. E. 2002. Functional expression and cellular localization of cercosporin-resistance proteins fused with GFP in Cercospora nicotianae. Curr. Genet. 41:159-168.

Mitchell, T. K., Chilton, W. S., and Daub, M. E. 2002. Biodegradation of the polyketide toxin cercosporin. Appl. Environ. Microbiol. 68:4173-4181.

Jennings, D. B., Daub, M. E., Pharr, D. M., and Williamson, J. D. 2002. Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant J 32:41-49.

Bilski, P., Daub, M. E., and Chignell, C. F. 2002. Direct detection of singlet oxygen via its phosphorescence from cellular and fungal cultures. Methods Enzym. 352:41-52.

Herrero, S. Rufty, R.C., and Daub, M.E. 2001. Molecular determinants influencing the inheritance of transgenic virus resistance in segregating tobacco families transformed with the nucleocapsid gene of tomato spotted wilt virus. Molec. Breeding 7:131-139.

Ehrenshaft, M., and Daub, M. E. 2001. Isolation of pdx2, a second novel gene in the pyridoxine biosynthetic pathway of eukaryotes, archaebacteria, and a subset of eubacteria. J. Bact. 183:3383-3390.

Daub, M. E., Li, M., Bilski, P., and Chignell, C. F. 2000. Dihydrocercosporin singlet oxygen production and subcellular localization: a possible defense against cercosporin phototoxicity in Cercospora. Photochem. Photobiol. 71:135-140.

Bilski, P., Li, M. Y., Ehrenshaft, M., Daub, M. E., and Chignell, C. F. 2000. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem. Photobiol. 71:129-134.

Herrero, S., Culbreath, A. K., Csinos, A. S., Pappu, H. R., Rufty, R. C., and Daub, M. E. 2000. Nucleocapsid gene-mediated transgenic resistance provides protection against tomato spotted wilt virus epidemics in the field. Phytopathology 90:135-140.

Ehrenshaft, M., Daub, M. E., Bilski, P., Li, M. Y., Chignell, C. F., Jenns, A. E., and Chung, K. R. 2000. A divergence in the biosynthetic pathway and a new role for vitamin B6. pp. 17-22 In Biochemistry and Molecular Biology of Vitamin B6 and PQQ-dependent Proteins. A. Iriarte, H. M. Kagan, and M. Martinez-Carrion, eds. Birkhauser Verlag, Basel.

Daub, M. E. and Ehrenshaft, M. 2000. The photoactivated Cercospora toxin cercosporin: contributions to plant disease and fundamental biology. Annu. Rev. Phytopathol. 38:461-490.

Ehrenshaft, M., Chung, K. R., Jenns, A. E., and Daub, M. E. 1999. Functional characterization of SOR1, a gene required for resistance to photosensitizing toxins in the fungus Cercospora nicotianae. Current Genetics 34:478-485.

Chung, K. R., Jenns, A. E., Ehrenshaft, M., and Daub, M. E. 1999. A novel gene required for cercosporin toxin resistance in the fungus Cercospora nicotianae. Mol. Gen. Genet. 262:382-389.

Ehrenshaft, M., Bilski, P., Li, M., Chignell, C. F., and Daub, M. E. 1999. A highly conserved sequence is a novel gene involved in de novo vitamin B6 synthesis. Proc. Natl. Acad. Sci. 96:9374-9378.

Sherman, J. M, Moyer, J. W., and Daub, M. E. 1998. A single high-efficiency regeneration and Agrobacterium-mediated transformation system for the genetic engineering of multiple chrysanthemum genotypes. J. Am. Soc. Hort. Sci. 123:189-194

Sherman, J. M., Moyer, J. W., and Daub, M. E. 1998. Tomato spotted wilt virus resistance in chrysanthemum expressing the virual nucleocapsid gene. Plant Dis. 82 :407-414.

Ehrenshaft, M., Jenns, A. E., Chung, K. R., and Daub, M. E. 1998.SOR1, a gene required for photosensitizer and singlet oxygen resistance in Cercospora fungi is highly conserved in divergent organisms. Mol. Cell 1:603-609.

Daub, M. E., Ehrenshaft, M., Jenns, A. E., and Chung, K. R. 1998. Active oxygen in fungal pathogenesis of plants: the role of cercosporin in Cercospora diseases. pp. 31-56 In J. T. Romeo, K. R. Downum, and R. Verpoorte, eds. Phytochemical Signals and Plant-Microbe Interactions, Recent Advances in Phytochemistry, Vol 32, Plenum Press, NY.